a2 United States Patent

McLachlan et al.

US009275050B2

US 9,275,050 B2
Mar. 1, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

(56)

4,744,026 A
5,249,120 A

GLOBAL DICTIONARIES USING
UNIVERSAL PRIMITIVES

Applicant: APPTIO, INC., Bellevue, WA (US)

Inventors: Paul Damien McLachlan, Newcastle,
WA (US); Tavis Dean Elliott, Bothell,
WA (US)

Assignee: Apptio, Inc., Bellevue, WA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 490 days.

Appl. No.: 13/649,019

Filed: Oct. 10, 2012

Prior Publication Data

US 2013/0103654 Al Apr. 25,2013

Related U.S. Application Data

Provisional application No. 61/550,609, filed on Oct.
24,2011.

Int. Cl1.
GO6F 17/30

U.S. CL
CPC GO6F 17/30002 (2013.01); GO6F 17/30321
(2013.01); GOGF 17/30371 (2013.01); GO6F
17/30424 (2013.01)

(2006.01)

Field of Classification Search
CPC e GOGF 17/30321
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

5/1988 Vanderbei
9/1993 Foley

Identify Common

302/\/ Data Types within
DataBase

Y

Create Global

304/.\/ Dictionary Map For
Common Data Types

Réplace Data Types
With UNIPs?

NO
Y

306

Replace Data Types
with Global Keys

308 /\/

5,721,919 A 2/1998 Morel et al.
5,799,286 A 8/1998 Morgan et al.
5,802,508 A 9/1998 Morgenstern
5,970,476 A 10/1999 Fahey
5,991,741 A 11/1999 Speakman et al.
6,014,640 A 1/2000 Bent
(Continued)

FOREIGN PATENT DOCUMENTS

JP 2011134268 A 7/2011

OTHER PUBLICATIONS

International Search Report and Written Opinion for International
Patent Application No. PCT/US2012/028353 mailed Oct. 31, 2012.

(Continued)

Primary Examiner — Kris Mackes
(74) Attorney, Agent, or Firm — John W. Branch; Lowe
Graham Jones PLLC

(57) ABSTRACT

Embodiments are directed towards managing data storage
and queries within a database system using global dictionar-
ies with universal primitives (UNIPs) to represent non-nu-
meric data within a mixed numeric/non-numeric environ-
ment. Common data types are managed within a same global
dictionary through dictionaries that are globally used within
the database system. At least non-numeric data within mixed
data fields may be stored using a UNIP to identity the stored
non-numeric data. The UNIP may take advantage of the
IEEE-754 standard for floating point data representation by
setting a first field within the UNIP to 0x7{f (HEX) to indicate
that the data is non-numeric (NaN) and using remaining bits
to store typed data, such as a date or unique indirect reference
(e.g. a sequence number or file offset to larger piece of data).
The UNIP may then replace the data within the database and
be used during operations performed on the data.

20 Claims, 6 Drawing Sheets

/‘ 300

31 08
Replace Data Types

with UNIP
(See FIG. 4)

YES—»]

RETURN

US 9,275,050 B2

Page 2
(56) References Cited 2006/0085302 A1 4/2006 Weiss et al.
2006/0085465 Al 4/2006 Nori et al.
U.S. PATENT DOCUMENTS 2006/0106658 Al 5/2006 Johanson et al.

2006/0161879 Al 7/2006 Lubrecht et al.
6,032,123 A 2/2000 Jameson 2006/0167703 Al 7/2006 Yakov
6,047,290 A 4/2000 Kennedy et al. 2006/0178960 Al 82006 Lepman
6208993 Bl 3/2001 Shadmon 2006/0179012 Al 8/2006 Jacobs
6,249,769 Bl 6/2001 Ruffin et al. 2006/0190497 Al 8/2006 Inturi et al.
6,253,192 Bl 6/2001 Corlett et al. 2006/0200477 Al 9/2006 Barrenechea
6.308.166 Bl 10/2001 Breuker et al. 2006/0212334 Al 9/2006 Jackson
6,321,207 Bl 11/2001 Ye 2006/0224946 Al 10/2006 Barrett et al.
6,330,552 Bl 12/2001 Farrar et al. 2006/0228654 Al 10/2006 Sanjar et al.
6,424,969 B1* 7/2002 Gruenwaldccooovr...... 707/802 %88?;8%%‘2%3 ﬁi 1%88? PBIfmandeZ-Sherrington etal.
6,507,825 B2 1/2003 Suh umenau
6,578,005 Bl 6/2003 Lesaint et al. %883?8}5‘8‘523 ﬁi 3%88; glelkyslial
6,839,719 B2 1/2005 Wallace olan et al.
6,877,034 Bl 4/2005 Machin et al. 2007/0214413 Al 9/2007 Boeckenhauer
6,882,630 Bl 4/2005 Seaman 2007/0226090 Al 9/2007 Stratton
6,983,321 B2 1/2006 Trinon et al. 2007/0260532 Al 11/2007 Blake, III
7,050,997 Bl 5/2006 Wood, Jr. 2007/0271203 Al 11/2007 Delvat
7,130,822 Bl 10/2006 Their et al. 2007/0276755 Al 11/2007 Rapp
7,149,700 Bl 12/2006 Munoz et al. 2007/0282626 Al 12/2007 Zhang et al.
7,177,850 B2 2/2007 Argenton et al. 2008/0033774 Al 2/2008 Kimbrel et al.
;%ggi% gi 1%88; %al?lm 2008/0065435 Al 3/2008 Ratzloff
,308, 00 2008/0071844 Al 3/2008 Gopal et al.
7,321,869 Bl 1/2008 Phibbs, Ir 2008/0201269 Al 82008 Hollins et al.
7,590,937 B2 972009 Jacobus et al. 2008/0295096 Al 11/2008 Beaty et al.
7634431 B2 12/2009 Stratton 2008/0312979 Al 122008 Lee etal
7,725,343 B2 5/2010 Johanson et al. T

2009/0012986 Al 1/2009 Arazi et al.
7,742,961 B2 6/2010 Aaron et al. ;

7752077 B2 7/2010 Holden et al, 2009/0018880 Al 1/2009 Bailey et al.
7,774,458 B2 8/2010 Trinon et al 2009/0100017 Al 4/2009 QGraves et 3.1
7,783,759 B2 8/2010 Ellam et al. 2009/0100406 Al 4/2009 Greenﬁeld et al.
achandran

7,813,948 B2 10/2010 Ratzloff 2009/0144120 Al 6/2009 Ramachandr:
7,877,742 B2 1/2011 Duale et al. 2009/0150396 Al 6/2009 Elisha et al.
7,899,235 Bl 3/2011 Williams et al. 2009/0198535 Al 82009 Brown etal.
7,930,396 B2 4/2011 Trinon et al. 2009/0216580 Al 8/2009 Bailey et al.
7,933,861 B2 4/2011 Zadorozhny 2009/0234892 Al* 9/2009 Anglinetal. 707/201
7,945,480 B2 5/2011 Weiss et al. 2009/0300173 Al 12/2009 Bakman et al.
7,966,235 Bl 6/2011 Capelli et al. 2009/0319316 Al 12/2009 Westerfeld et al.
8,010,584 Bl 8/2011 Craver et al. 2010/0005014 Al 1/2010 Castle et al.
8,024,241 B2 9/2011 Bailey et al. 2010/0005173 Al 1/2010 Baskaran et al.
8,175,863 Bl 5/2012 Ostermeyer et al. 2010/0042455 Al 2/2010 Liuet al.
8.200.518 B2 6/2012 Bailey et al. 2010/0082380 Al 4/2010 Merrifield, Ir. et al.
8209218 Bl 6/2012 Basu etal. .

¢ 2010/0094740 A1 4/2010 Richter
8,260,959 B2 9/2012 Rudkin et al.

2010/0125473 Al 52010 Tungetal.
g’i;g’f‘gg gé f‘ggg gf;%g et al 2010/0169477 Al 7/2010 Stienhans et al.
9481355 Bl 72013 Lochhead of al. 2010/0211667 Al 82010 O’Connell, Jr.
8,601,263 B1* 12/2013 Shankaretal. 713/166 2010/0250419 AL 9/2010 Ariff et al.
8,768,976 B2 7/2014 MecLachlan et al. 2010/0250421 Al 9/2010 Auriff et al.

2002/0002557 Al 1/2002 Straube et al. 2010/0250642 Al 9/2010 Yellin et al.
2002/0016752 Al 2/2002 Suh 2010/0293163 Al 11/2010 McLachlan
2002/0069102 Al 6/2002 Vellante et al. 2010/0299233 Al 11/2010 Licardi et al.
2002/0123945 Al 9/2002 Booth et al. 2010/0306382 Al 12/2010 Cardosa et al.
2002/0145040 Al 10/2002 Grabski, ITI 2010/0325606 Al 12/2010 Sundararajan et al.
2002/0156710 Al 10/2002 Ryder 2010/0332262 Al 12/2010 Horvitz et al.
2002/0178198 Al* 11/2002 Steele, Jr. ooocovvvrrenrnnen.. 708/495 2010/0333109 Al 12/2010 Milnor
2003/0083888 Al 5/2003 Argenton et al. 2011/0016214 Al 1/2011 Jackson
2003/0139960 Al 7/2003 Nishikawa et al. 2011/0016448 Al 1/2011 Bauder et al.
2003;0139986 Al 7;2003 R"E?gtas’ Jr ’ 2011/0022861 Al 1/2011 Agneeswaran et al.
2003/0158724 A1* 2003 Uchida G06Q 1(7)0149; 2011/0066628 Al* 3/2011 Jayaraman ... 707/758
2003/0158766 Al 8/2003 Mital et al. 2011/0106691 Al 52011 Clark et al.
2011/0167034 Al 7/2011 Knight et al.
2003/0172368 Al 9/2003 Alumbaugh et al. 011/0295277 AL 92011 Frebouth ot al
2003/0195780 Al 10/2003 Arora etal. reimuth et al.
20030236721 Al 1212003 Plumer ef al. 2012/0023170 Al 1/2012 Matignon et al.
2004/0059611 Al 3/2004 Kananghinis et al. gggg?g?gg? 2} gggg ﬁoonrthe_t at1~al
2004/0093344 Al 5/2004 Berger et al. oorthi et al.
2004/0111509 Al 6/2004 Eila%netal. 2012/0150736 Al 6/2012 Dickerson et al.
2004/0186762 Al 9/2004 Beaven et al. 2012/0232947 Al 9/2012 McLachlan et al.
2004/0243438 Al 12/2004 Mintz 2012/0233217 Al 9/2012 Purpus et al.
2005/0004856 Al 1/2005 Brose et al. 2012/0233547 Al 9/2012 McLachlan
2005/0060298 Al 3/2005 Agapi et al. 2013/0041819 Al 2/2013 Khasho
2005/0060317 Al 3/2005 Lott et al. 2013/0060595 Al 3/2013 Bailey
2005/0120032 Al 6/2005 Liebich et al. 2013/0138470 Al 52013 Goyal et al.
2005/0171918 Al 82005 Eden et al. 2013/0179371 Al 7/2013 Jainetal.
2006/0041458 Al 2/2006 Ringrose et al. 2013/0201193 Al 82013 McLachlan et al.
2006/0080264 Al 4/2006 Zhang et al. 2013/0282537 Al 10/2013 Snider

US 9,275,050 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2013/0346390 Al
2014/0067632 Al

OTHER PUBLICATIONS

12/2013 Jerzak et al.
3/2014 Curtis

International Search Report and Written Opinion for International
Patent Application No. PCT/US2012/028378 mailed on Sep. 12,
2012.

Official Communication for U.S. Appl. No. 12/467,120 mailed Jun.
20, 2012.

Official Communication for U.S. Appl. No. 12/467,120 mailed Aug.
29,2012.

Official Communication for U.S. Appl. No. 13/324,253 mailed Sep.
25,2012.

Official Communication for U.S. Appl. No. 13/452,628 mailed Nov.
18, 2013.

Official Communication for U.S. Appl. No. 14/033,130 mailed Dec.
16, 2013.

Official Communication for U.S. Appl. No. 13/324,253 mailed Jan.
23,2014.

Official Communication for U.S. Appl. No. 13/675,837 mailed Jan.
31,2014.

Official Communication for U.S. Appl. No. 13/917,503 mailed Jan.
31,2014.

Robinson Glen, Cloud Economics—Cost Optimization (selected
slides), Amazon Web Services AWS, Slideshare, Feb. 28,2012 http://
www.slideshare.net/ AmazonWebServices/whats-new-with-aws-
london.

Skilton et al, Building Return on Investment from Cloud Computing,
The open Group Whitepaper, mladina webpages, Apr. 2010 http://
www.mladina.si/media/objave/dokumenti/2010/5/31/31_5__
2010__open__group_ building_return-on-investment-from-cloud-
computing.pdf.

Ward Miles, Optimizing for Cost in the Cloud (selection), AWS
Summit, Slideshare Apr. 2012 http://www.slideshare.net/
AmazonWebServices/optimizing-your-infrastructure-costs-on-aws.
Amazon Reserved Instances, Amazon Web Services, archives org,
Jan. 14, 2013 http://web.archive.org/web/2012011453849/http://
aws.amazon.com/rds/reserved-instances/?

Cost Optimisation with Amazon Web Services, extracted slides,
Slideshare Jan. 30, 2012 http://www.slideshare.net/
AmazonWebServices/cost-optimisation-with-amazon-web-
services?from search=1.

Deciding an Approach to the cloud AWS Reserved Instances,
Cloudyn webpages, Feb. 28, 2012 https://www.cloudyn.com/blog/
deciding-an-approach-to-the-cloud-aws-reserved-aws.

Ganesan Harish, Auto Scaling using AWS, Amazon Web Services
AWS (selected slides), Apr. 20 2011 http://www.slideshare.net/
harishganesan/auto-scaling-using-amazon-web-services-aws.
Official Communication for U.S. Appl. No. 12/467,120 mailed Oct.
4,2011.

International Search Report and Written Opinion for International
Patent Application No. PCT/US2010/035021 mailed Jul. 14, 2010.
International Preliminary Report on Patentability for International
Patent Application No. PCT/US2010/035021 mailed Nov. 24, 2011.
“Program Evaluation and Review Technique,” VVikipedia, the free
encyclopedia, accessed Mar. 13, 2012, 10 pages http://en.wikipedia.
org/wiki/Program_ Evaluation_and_Review_ Technique—Ilast
modified Mar. 12, 2012.

“Project management,” Wikipedia, the free encyclopedia, accessed
Mar. 13, 2012, 14 pages http://en.wikipedia.org/wiki/Project__man-
agement—Ilast modified Mar. 7, 2012.

“Activity Based Costing is the best allocation methodology,”
APPTIO, Community for Technology Business Management, Mar.
16, 2010, 2 pages.

“Amazon Elastic Computer Cloud (Amazon EC2)”, archive.org, Oct.
21, 2011, 9 pages http://web.archive.org/web/20111029130914/
http://aws.amazon.com/ec2/#pricing.

“Apptio Extends Leadership in Cloud Business Management with
Launch of Apptio Cloud Express,” Apptio, Dec. 12, 2012, 2 pages
http://www.apptio.com/news/apptio-extends-leadership-cloud-busi-
ness-management-launch-apptio-cloud-express#. Ukm4r8X7Lco.
“Apptio Optimizes Enterprise IT Costs Utilizing Amazon Web Ser-
vices Cloud Computing,” Apptio, Apr. 7, 2009, 2 pages http://www.
apptio.com/news/apptio-optimizes-enterprise-it-costs-utilizing-
amazon-web-services-cloud-computing#. Ukm5XsX7Lco.
“Automating Cost Transparency,” Apptio, 2008, 15 pages htto://
www.cio.com/documents/whitepapers/AutomatedCost Transpar-
ency.pdf.

“Cloud Computing and Sustainability: The Environmental Benefits
of Moving to the Cloud,” Accenture, archive.org, Aug. 31, 2011, 17
pages http://web.archive.org/web/20110813022626/http://www.ac-
centure.conySiteCollectionDocuments/PDF/Accenture_ Sustain-
ability_ Cloud__ Computing
TheEnvironmentalBenefitsofMovingtotheCloud. pdf.

“IT Cost Transparency and Apptio,” Dec. 4, 2008, 2 pages http://web.
archive.org/web/20081204012158/http://www.apptio.com/solu-
tions.

“Visualization for Production Management: Treemap and Fisheye
Table Browser,” Open-Video Organization webpages, 2001, 2 pages
http://www.open-video.org/details.php?videoid=4547.

Busch, I., “Six Strategies for I'T Cost Allocation,” Spend Matters, Jan.
S5,2011, 3 pages http://spendmatters.com/2011/01/05/six-strategies-
for-it-cost-allocation/.

Morgan, T. P., “Apptio puffs up freebie cost control freak for public
clouds,” The Register, Dec. 12,2012, 2 pages http://www.theregister.
co.uk/2012/12/12/apptio__cloud__express.

Ricknis, M., “Apptio unveils tool to keep track of cloud costs,”
ComputerWorld, Dec. 12, 2012, 1 page http://www.computerworld.
com/s/article/9234630/Apptio__unveils_ tool_to_ keep_ track _

of cloud costs.

Talbot, C., “Apptio Cloud Express Provides Free Usage Tracking
Service,” talkincloud.com, Dec. 12, 2012, 4 pages http://talkincloud.
com/cloud-computing-management/apptio-cloud-express-pro-
vides-free-usage-tracking-service.

Vizard, M., “Free Service from Apptio Tracks Cloud Service Pro-
vider Pricing,” IT Business Edge, Dec. 12,2012, 6 pages http://www.
itbusinessedge.com/blogs/it-unmasked/free-service-from-apptio-
tracks-cloud-service-provider-pricing.html.

International Preliminary Report on Patentability for International
Patent Application No. PCT/US2012/028353 mailed Sep. 19, 2013.
International Preliminary Report on Patentability for International
Patent Application No. PCT/US2012/028378 mailed Sep. 19, 2013.
Official Communication for U.S. Appl. No. 12/467,120 mailed Oct.
23, 2013.

Official Communication for U.S. Appl. No. 13/324,253 mailed Sep.
6,2013.

Official Communication for U.S. Appl. No. 13/415,797 mailed Oct.
3,2013.

Official Communication for U.S. Appl. No. 13/675,837 mailed Oct.
10, 2013.

Official Communication for U.S. Appl. No. 13/837,815 mailed Oct.
23, 2013.

Official Communication for U.S. Appl. No. 13/917,478 mailed Nov.
7,2013.

Official Communication for U.S. Appl. No. 13/917,503 mailed Oct.
10, 2013.

Official Communication for U.S. Appl. No. 13/935,147 mailed Oct.
22,2013.

“Notice from the Furopean Patent Office dated Oct. 1, 2007 concern-
ing business methods,” Official Journal EPO, Nov. 2007, pp. 592-
593.

Extended European Search Report in EP Application No. 13151967.
0-1955, mailed Apr. 19, 2013.

Official Communication for U.S. Appl. No. 12/467,120 mailed Mar.
26, 2013.

Official Communication for U.S. Appl. No. 13/324,253 mailed Jan.
10, 2013.

Official Communication for U.S. Appl. No. 13/324,253 mailed Mar.
19, 2013.

US 9,275,050 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Official Communication for U.S. Appl. No. 13/452,628 mailed Apr.
22,2013.

International Search Report and Written Opinion for International
Application No. PCT/US2012/028353 mailed Mar. 8, 2012.
Extended Furopean Search Report in EP Application No.
14159413.5 mailed Jul. 4, 2014.

Office Communication for U.S. Appl. No. 13/452,628 mailed Mar.
13, 2014.

Office Communication for U.S. Appl. No. 14/180,308 mailed Apr. 8,
2014.

Office Communication for U.S. Appl. No. 14/180,308 mailed Sep. 2,
2014.

Office Communication for U.S. Appl. No. 14/033,130 mailed on
Aug. 5,2014.

Office Communication for U.S. Appl. No. 14/033,130 mailed on May
27,2014.

Office Communication for U.S. Appl. No. 13/935,147 mailed on Jun.
16, 2014.

Office Communication for U.S. Appl. No. 13/935,147 mailed on Apr.
11, 2014.

Office Communication for U.S. Appl. No. 13/675,837 mailed on Jan.
31, 2014.

SAS Activity-Based Management, 2010, Fact Sheet, 4 pages.
Office Communication for U.S. Appl. No. 13/415,797 mailed on Apr.
9,2014.

Office Communication for U.S. Appl. No. 13/917,503 mailed Apr. 3,
2014.

Office Communication for U.S. Appl. No. 14/180,308 mailed Jan. 30,
2015.

Office Communication for U.S. Appl. No. 13/365,150 mailed on Dec.
3,2014.

Office Communication for U.S. Appl. No. 13/452,628 mailed on Oct.
1,2014.

Office Communication for U.S. Appl. No. 13/415,797 mailed on Jan.
12, 2015.

Office Communication for U.S. Appl. No. 13/837,815 mailed on Apr.
7,2014.

Office Communication for U.S. Appl. No. 13/675,837 mailed on Apr.
2,2014.

Office Communication for U.S. Appl. No. 13/837,815 mailed Sep.
25,2014.

Office Communication for U.S. Appl. No. 13/324,253 mailed on Apr.
9,2014.

Office Communication for U.S. Appl. No. 13/324,253 mailed on Oct.
24, 2014.

Office Communication for U.S. Appl. No. 12/467,120 mailed on Oct.
4,2011.

Office Communication for U.S. Appl. No. 13/324,253 mailed on Feb.
19, 2015.

Henriet et al. “Traffic-Based Cost Allocation in a Network.” The
Rand Journal of Economics, 1996, pp. 332-345.

Rudnick et al., “Marginal Pricing and Supplement Cost Allocation in
Transmission Open Access.” Power Systems, IEEE Transactions on
10.2, 1995, pp. 1125-1132.

European Search Report for Application No. 12755613.2 mailed on
Jan. 26, 2015.

Office Communication for U.S. Appl. No. 13/452,628 mailed on Mar.
30, 2015.

Office Communication for U.S. Appl. No. 14/180,308 mailed on Apr.
17, 2015.

Office Communication for U.S. Appl. No. 13/917,503 mailed on Apr.
16, 2015.

Office Communication for U.S. Appl. No. 13/675,837 mailed on Apr.
16, 2015.

Office Communication for U.S. Appl. No. 13/837,815 mailed on Apr.
27,2015.

Office Communication for U.S. Appl. No. 13/452,628 mailed on Jun.
23, 2015.

Office Communication for U.S. Appl. No. 13/415,797 mailed Jul. 23,
2015.

International Search Report and Written Opinion for PCT/US2015/
015486 mailed Jun. 29, 2015.

Office Communication for U.S. Appl. No. 13/935,147 mailed Jul. 9,
2015.

* cited by examiner

U.S. Patent Mar. 1, 2016 Sheet 1 of 6 US 9,275,050 B2

100

\\
Client Device
8105 Wireless Client Device
. Television Networlk
= =L Device 110
101
Client Device

Wide Area
Network/Local
Area Network -
(Network)

FIG. 1

U.S. Patent Mar. 1, 2016 Sheet 2 of 6 US 9,275,050 B2

- ™~ -
_ -7 (] - ~ -

/// P LT I \\\
- Network Device ™~
- ~

Central Processing Unit ’\/212
216 222
\ /\J
| I 210
RAM CD-ROM/| 996)
220 | Operating D VD‘ROM \/
% System Drive Network
Interface [« >
Data Stores - 254 Input/Output Unit
4
Interface
250 N 224
Applications T~/ -
Primitive TN 7"’ Hard Disk (228
Manager Drive
256
Web Services |||
Data 1] 1258
Management L/
Services Video |-
214
Display | N_/
Adapter
A
232
ROM [\
BIOS f\518
v v

FIG. 2

U.S. Patent Mar. 1, 2016 Sheet 3 of 6 US 9,275,050 B2

300
START e

Identify Common

302 _/| Data Types within
DataBase

v

Create Global

304/\/ Dictionary Map For
Common Data Types

31 08
Replace Data Types

YES—b>| with UNIP
(See FIG. 4)

eplace Data Type

306 With UNIPs?

NO
v

Replace Data Types
308 /\/ with Global Keys

| 4

RETURN

FIG. 3

U.S. Patent Mar. 1, 2016 Sheet 4 of 6 US 9,275,050 B2

START } /——— 400

402\ | Read Data

YES

Y

Get UNIP
Assigned To
Data

Determine Storage

40(;\/ Location in File/
Block To Save Data

v

Generate UNIP
410 _| Using File/Block

Information
+<

Replace Data
41/2\/ With UNIP

t——YES More Data?
416

NO

RETURN

FIG. 4

U.S. Patent Mar. 1, 2016 Sheet 5 of 6 US 9,275,050 B2

500
<?xml versionz="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

xmlns: tx="http://apptio.com/tx#">

<rdf:Description rdf:about="http://apptioc.com/tx/77">
<tx:date>5/4/2010</tx:date>
<tx:person>http://apptio.com/em/BobZ</tx:person>
<tx:amount>32,73</tx:amount>

</xrdf:Description>

<rdf:Description rdf:about="http://apptioc.com/tx/78">
<tx:date>5/5/2010</tx:date>
<tx:person>http://apptioc.com/em/Bob2Z</tx:person>
<tx:amount>883.01</tx:amount>

</rdf:Description>

<rdf:Description rdf:about="http://apptio.com/tx/79">
<tx:date>5/6/2010</tx:date>
<tx:person>http://apptio.com/em/Pete</tx:person>
<tx:amount>$21,22</tx:amount>

</rdf:Description>

<rdf:Description rdf:about="http://apptioc.com/tx/80">
<tx:date>5/9/2010</tx:date>
<tx:person>http://apptio.com/em/Pete</tx:person>
<tx:amount>1,892.99</tx:amount>

</rdf:Description>

<rdf:Description rdf:about="http://apptio.com/tx/81">
<tx:date>5/10/2010</tx:date>
<tx:person>http://apptio.com/em/Pete</tx:person>
<tx:amount>123.22</tx:amount>

</rdf:Description>

<rdf:Description rdf:about="http://apptioc.com/em/George">
<tx:manager>http://apptio.com/em/Pete</tx:manager>

</rdf:Description>

<rdf:Description rdf:about="http://apptio.com/em/Pete">
<tx:manager>http://apptio.com/em/Zoey</tx:manager>

</rdf :Description>

<rdf:Description rdf:about="http://apptioc.com/em/Lisa">
<tx:manager>http://apptio.com/em/Zoey</tx:manager>

</rdf:Description>

<rdf:Description rdf:about="http://apptio.com/em/BcbZ">
<tx:manager>http://apptio.com/em/Pete</tx:manager>

</rdf :Description>

<rdf:Description rdf:about="http://apptio.com/em/Paul”>
<tx:manager>http://apptio.com/em/Pete</tx:manager>

</rdf:Description>

</rdf :RDF>

FIG. 5

U.S. Patent Mar. 1, 2016 Sheet 6 of 6 US 9,275,050 B2
o 600

Non-Numeric UNIP averlaid bit format

UEEEIR SRR A b i FEOTTRE TTRE PRVLOTERY LR OTTUE OVRTY PRV VO VMR OROTE ey
Vo
Ol nddicates 2 bit type 50 bit value' depending upon type

ot & number

For Strings {type 00) and Sets {ype 10)

o119 vy Q0 1 THOIDD TR0 1100 9900 990 0090 90 TR OMHEY S0 13
-

Oxttindicates 00 indicates & oit 19 Bl Dlook muamber 28 vit offsat in block

not & mamber ‘string’ e nurrber

For Dates {type 01)

Ght T 1 01 TPV TP P00 1001 0910 1180 1000 100 108 1898 11 1

01 indicates , "
‘date 50 bil integer encoding of milliseconds singe Jan 1. 1870

OxTH indicates
‘mol & nurnber”

Q111 111y i 1 1 PRUORRET 10ED U9RT OTTRT 0 vERY OBERTOIYLYOPYTTOTMIT VY ouive

—_ uk- . —

11 indicates

it inddicates
wm ded < e W eytendod tvoe speeilfic dats
w1 number type extended type £ ts of extended vpa specilic data

FIG. 6

US 9,275,050 B2

1
GLOBAL DICTIONARIES USING
UNIVERSAL PRIMITIVES

CROSS REFERENCE

This application is a Non-Provisional patent application of
U.S. Provisional Patent Application No. 61/550,609, filed
Oct. 24, 2011, entitled “Global Dictionaries Using Universal
Primitives,” the benefit of the earlier filing date of which is
hereby claimed under 35 U.S.C. §119(e) and which is further
incorporated herein by reference in its entirety.

TECHNICAL FIELD

The subject innovations disclosed herein relate generally to
data management systems, and, more particularly, but not
exclusively to managing resource efficiencies within data
storage systems having mixed numeric and non-numeric data
by employing global dictionaries using universal primitives
for managing non-numeric data, the universal primitive takes
advantage of features of the IEEE Standard for Floating-Point
Arithmetic (IEEE-754).

BACKGROUND

Today’s computing environments typically include data-
base systems that may be tasked to manage large quantities of
data. Because of the sheer volume of data that is expected to
be stored and managed by today’s database systems, there is
often a desire by the database managers to store the datain a
way the reduces resource requirements, such as hardware
computer storage requirements, data access requirements,
and so forth. One traditional mechanism that may be used to
reduce resource requirements is to compress the data by using
various techniques. For example, one such technique is
known as a Run-Length Encoding Compression technique. In
this compression technique, duplicated data values may be
replaced by some value representing the duplicated data and
a count indicating a number of times the data is duplicated.
This technique is often useful when the data contains many
‘runs’ of duplicate data, such as might arise in data that
represents images, or the like. However, where the data
doesn’t include many ‘runs’ of duplicate data, the Run-
Length Encoding technique may actually increase storage
size requirements. Thus, it is with respect to these consider-
ations and others that the present invention has been made.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the
present invention are described with reference to the follow-
ing drawings. In the drawings, like reference numerals refer
to like parts throughout the various figures unless otherwise
specified.

For a better understanding of the present invention, refer-
ence will be made to the following Detailed Description,
which is to be read in association with the accompanying
drawings, wherein:

FIG. 1 is a system diagram of one embodiment of an
environment in which the invention may be practiced;

FIG. 2 shows one embodiment of a network device that
may be included in a system implementing the invention;

FIG. 3 illustrates a logical flow generally showing one
embodiment of an overview process for use in determining
global dictionaries for common data types within a mixed
numeric and non-numeric database store;

15

25

30

40

45

50

55

2

FIG. 4 illustrates a logical flow generally showing one
embodiment of an overview process for use in determining
universal primitives for non-numeric data;

FIG. 5 illustrates one embodiment of a non-limiting, non-
exhaustive example of encoding a transaction/employee
model using a semantic Resource Description Framework
(RDF); and

FIG. 6 illustrates non-limiting, non-exhaustive examples
of universal primitives (UNIPs).

DETAILED DESCRIPTION

The subject innovation now will be described more fully
hereinafter with reference to the accompanying drawings,
which form a part hereof, and which show, by way of illus-
tration, specific embodiments by which the invention may be
practiced. This invention may, however, be embodied in many
different forms and should not be construed as limited to the
embodiments set forth herein; rather, these embodiments are
provided so that this disclosure will be thorough and com-
plete, and will fully convey the scope of the invention to those
skilled in the art. Among other things, the present invention
may be embodied as methods or devices. Accordingly, the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment combining software and hardware aspects. The follow-
ing detailed description is, therefore, not to be taken in a
limiting sense.

Throughout the specification and claims, the following
terms take the meanings explicitly associated herein, unless
the context clearly dictates otherwise. The phrase “in one
embodiment” as used herein does not necessarily refer to the
same embodiment, though it may. Furthermore, the phrase
“in another embodiment” as used herein does not necessarily
refer to a different embodiment, although it may. Thus, as
described below, various embodiments of the invention may
be readily combined, without departing from the scope or
spirit of the invention.

In addition, as used herein, the term “or” is an inclusive
“or” operator, and is equivalent to the term “and/or,” unless
the context clearly dictates otherwise. The term “based on” is
not exclusive and allows for being based on additional factors
not described, unless the context clearly dictates otherwise. In
addition, throughout the specification, the meaning of “a,”
“an,” and “the” include plural references. The meaning of
“in” includes “in” and “on.”

The following briefly describes the embodiments in order
to provide a basic understanding of some aspects of the inven-
tion. This brief description is not intended as an extensive
overview. It is not intended to identify key or critical ele-
ments, or to delineate or otherwise narrow the scope. Its
purpose is merely to present some concepts in a simplified
form as a prelude to the more detailed description that is
presented later.

Briefly stated, the present embodiments are directed
towards providing an efficient mechanism for managing data
storage and data queries using global dictionaries with uni-
versal primitives (UNIP) to represent at least non-numeric
data within a mixed numeric/non-numeric data storage envi-
ronment. In one embodiment, rather than managing multiple
distinct table entries within a data management system for
selected data types, common data types may be managed
within a same global dictionary. As described further below,
where, for example, names of persons, business, or other
non-numeric data fields are identified within a database sys-
tem, storage usage may be compressed by combining the data
through common dictionaries that may then be globally used

US 9,275,050 B2

3

within the database system. Further, where common data
fields may include mixed numeric and non-numeric data, data
manipulation may be difficult. Therefore as disclosed herein,
for non-numeric data within these mixed data fields, data may
be stored using a universal primitive (UNIP) to identify the
stored non-numeric data, its storage location, and other char-
acteristics. The universal primitive may then be used to
replace the non-numeric data within the database. In one
embodiment, the universal primitive may be employed as a
key within the global dictionaries. In some embodiments, the
universal primitive is created to take advantage of the Institute
of Electrical and Electronics Engineers (IEEE) Standard for
Floating-Point Arithmetic (IEEE-754), which is available
from the IEEE, and is incorporated herein in its entirety.
Using the IEEE-754 standard at least some fields within the
data representation may be manipulated to uniquely represent
non-numeric data. For example, in some embodiments, the
universal primitive may be a 64-bit data type representation
using the IEEE-754 standard for doubles. In one embodi-
ment, non-numeric data within the database may be represen-
tative by setting a first field within the 64-bit universal primi-
tive to Ox7f (HEX) to indicate that the data is non-numeric
(e.g., not-a-number or “NaN”). Other fields with the 64-bit
universal primitive may be identified to represent other char-
acteristics of the data, including, a type of the data, a storage
location/block/offset or so forth for the data. The universal
primitive may then replace the data within the database, and
be used during queries, comparisons, or the like, performed
on the data. That is, by representing non-numeric data using
the IEEE-754 operations such as comparisons, sorts, or the
like, may be performed across the entire database more effi-
ciently (e.g., without additional translation steps). It should
be recognized that while the above discloses using a 64-bit
data types, other embodiments may use longer or shorter
length data types.
Iustrative Operating Environment

FIG. 1 shows components of one embodiment of an envi-
ronment in which the invention may be practiced. Not all the
components may be required to practice various embodi-
ments, and variations in the arrangement and type of the
components may be made. As shown, system 100 of FIG. 1
includes local area networks (“LLANs”)/wide area networks
(“WANs”)—(network) 111, wireless network 110, client
devices 101-105, and Data Management System (DMS) 107.

One embodiment of client devices 101-105 is described in
more detail below in conjunction with FIG. 2. Generally,
however, client devices 102-104 may include virtually any
portable computing device capable of receiving and sending
a message over a network, such as network 111, wireless
network 110, or the like. Client devices 102-104 may also be
described generally as client devices that are configured to be
portable. Thus, client devices 102-104 may include virtually
any portable computing device capable of connecting to
another computing device and receiving information. Such
devices include portable devices such as, cellular telephones,
smart phones, display pagers, radio frequency (RF) devices,
infrared (IR) devices, Personal Digital Assistants (PDAs),
handheld computers, laptop computers, wearable computers,
tablet computers, integrated devices combining one or more
of'the preceding devices, and the like. As such, client devices
102-104 typically range widely in terms of capabilities and
features. For example, a cell phone may have a numeric
keypad and a few lines of monochrome Liquid Crystal Dis-
play (LCD) on which only text may be displayed. In another
example, a web-enabled mobile device may have a touch
sensitive screen, a stylus, and several lines of color LCD in
which both text and graphics may be displayed.

10

15

20

25

30

35

40

45

50

55

60

65

4

Client device 101 may include virtually any computing
device capable of communicating over a network to send and
receive information, including messaging, performing vari-
ous online actions, or the like. The set of such devices may
include devices that typically connect using a wired or wire-
less communications medium such as personal computers,
multiprocessor systems, microprocessor-based or program-
mable consumer electronics, network Personal Computers
(PCs), or the like. In one embodiment, at least some of client
devices 102-104 may operate over wired and/or wireless net-
work. Client device 105 may include virtually any device
useable as a television device. Today, many of these devices
include a capability to access and/or otherwise communicate
over a network such as network 111 and/or even wireless
network 110. Moreover, client device 105 may access various
computing applications, including a browser, or other web-
based application.

A web-enabled client device may include a browser appli-
cation that is configured to receive and to send web pages,
web-based messages, and the like. The browser application
may be configured to receive and display graphics, text, mul-
timedia, and the like, employing virtually any web-based
language, including a wireless application protocol messages
(WAP), and the like. In one embodiment, the browser appli-
cation is enabled to employ Handheld Device Markup Lan-
guage (HDML), Wireless Markup Language (WML), WML-
Script, JavaScript, Standard Generalized Markup Language
(SGML), HyperText Markup Language (HTML), eXtensible
Markup Language (XML), HTMLS5, and the like, to display
and send a message. In one embodiment, a user of the client
device may employ the browser application to perform vari-
ous actions over a network. For example, a user may employ
one of client devices 101-105 to manage data stored or oth-
erwise managed through DMS 107. A user might, for
example, enter various types of data into a data management
system accessible through DMS 107, where the data may be
heavily interrelated as might arise within business systems,
spreadsheet type data, or the like. The user might then per-
form any of a variety of actions on the data, including, que-
ries, comparisons, summations, analysis, or the like, as might
be expected within typical database systems.

Wireless network 110 is configured to couple client
devices 102-104 and its components with network 111. Wire-
less network 110 may include any of a variety of wireless
sub-networks that may further overlay stand-alone ad-hoc
networks, and the like, to provide an infrastructure-oriented
connection for client devices 102-104. Such sub-networks
may include mesh networks, Wireless LAN (WLAN) net-
works, cellular networks, and the like.

Wireless network 110 may further include an autonomous
system of terminals, gateways, routers, and the like connected
by wireless radio links, and the like. These connectors may be
configured to move freely and randomly and organize them-
selves arbitrarily, such that the topology of wireless network
110 may change rapidly.

Wireless network 110 may further employ a plurality of
access technologies including 2nd (2G), 3rd (3G), 4th (4G),
5th (5G) generation radio access for cellular systems, WLAN,
Wireless Router (WR) mesh, and the like. Access technolo-
gies such as 2G, 3G, 4G, and future access networks may
enable wide area coverage for mobile devices, such as client
devices 102-104 with various degrees of mobility. For
example, wireless network 110 may enable a radio connec-
tion through a radio network access such as Global System for
Mobil communication (GSM), General Packet Radio Ser-
vices (GPRS), Enhanced Data GSM Environment (EDGE),
Wideband Code Division Multiple Access (WCDMA), and

US 9,275,050 B2

5

the like. In essence, wireless network 110 may include virtu-
ally any wireless communication mechanism by which infor-
mation may travel between client devices 102-104 and
another computing device, network, and the like.

Network 111 is configured to couple network devices with
other computing devices, including, DMS 107, client devices
101 and 105, and through wireless network 110 to client
devices 102-104. Network 111 is enabled to employ any form
of computer readable media for communicating information
from one electronic device to another. Also, network 111 can
include the Internet in addition to local area networks
(LANs), wide area networks (WANS), direct connections,
such as through a universal serial bus (USB) port, other forms
of computer-readable media, or any combination thereof. On
an interconnected set of LANs, including those based on
differing architectures and protocols, a router acts as a link
between LLANs, enabling messages to be sent from one to
another. In addition, communication links within LANs typi-
cally include twisted wire pair or coaxial cable, while com-
munication links between networks may utilize analog tele-
phone lines, full or fractional dedicated digital lines including
T1, T2, T3, and T4, Integrated Services Digital Networks
(ISDNs), Digital Subscriber Lines (DSLs), wireless links
including satellite links, or other communications links
known to those skilled in the art. For example, various Inter-
net Protocols (IP), Open Systems Interconnection (OSI)
architectures, and/or other communication protocols, archi-
tectures, models, and/or standards, may also be employed
within network 111 and wireless network 110. Furthermore,
remote computers and other related electronic devices could
be remotely connected to either LANs or WANs via a modem
and temporary telephone link. In essence, network 111
includes any communication method by which information
may travel between computing devices.

Additionally, communication media typically embodies
computer-readable instructions, data structures, program
modules, or other transport mechanism and includes any
information delivery media. By way of example, communi-
cation media includes wired media such as twisted pair,
coaxial cable, fiber optics, wave guides, and other wired
media and wireless media such as acoustic, RF, infrared, and
other wireless media. Such communication media is distinct
from, however, computer-readable devices described in more
detail below.

DMS 107 may include virtually any network device usable
to provide data management services, such as network device
200 ofFIG. 2. In one embodiment, DMS 107 employs various
techniques to efficiently manage the storage of the data,
including as described herein, global dictionaries to compress
data storage, speed up joins and pre-aggregation or index
creation as well as improve query response times. Addition-
ally, universal primitives, as described herein, can be used to
efficiently manage mixed numeric and non-numeric data. In
one embodiment, DMS 107 might receive, combine, and/or
otherwise make use of the global dictionaries having the
universal primitives. Generation of universal primitives may
be performed, in one embodiment, using a process such as
described below in conjunction with FIGS. 3-4.

Devices that may operate as DMS 107 include various
network devices, including, but not limited to personal com-
puters, desktop computers, multiprocessor systems, micro-
processor-based or programmable consumer electronics, net-
work PCs, server devices, network appliances, and the like. It
should be noted that while DMS 107 is illustrated as a single
network device, the invention is not so limited. Thus, in
another embodiment, DMS 107 may represent a plurality of
network devices. For example, in one embodiment, DMS 107

10

15

20

25

30

35

40

45

50

55

60

65

6

may be implemented using a cloud architecture, being dis-
tributed over a plurality of network devices.

Moreover, DMS 107 is not limited to a particular configu-
ration. Thus, DMS 107 may operate using a master/slave
approach over a plurality of network devices, within a cluster
architecture, a peer-to-peer architecture, and/or any of a vari-
ety of other architectures. Thus, DMS 107 is not to be con-
strued as being limited to a single environment, and other
configurations, and architectures are also envisaged.
Iustrative Network Device

FIG. 2 shows one embodiment of a network device 200,
according to one embodiment of the invention. Network
device 200 may include many more or less components than
those shown. The components shown, however, are sufficient
to disclose an illustrative embodiment for practicing the
invention. Network device 200 may represent, for example,
DMS 107 of FIG. 1.

Network device 200 includes processing unit 212, video
display adapter 214, and a mass memory, all in communica-
tion with each other via bus 222. The mass memory generally
includes RAM 216, ROM 232, and one or more permanent
mass storage devices, such as hard disk drive 228, tape drive,
optical drive, flash drive, and/or floppy disk drive. The mass
memory stores operating system 220 for controlling the
operation of network device 200. Any general-purpose oper-
ating system may be employed. Basic input/output system
(“BIOS”) 218 is also provided for controlling the low-level
operation of network device 200. As illustrated in FIG. 2,
network device 200 also can communicate with the Internet,
or some other communications network, via network inter-
face unit 210, which is constructed for use with various com-
munication protocols including the TCP/IP protocol. Net-
work interface unit 210 is sometimes known as a transceiver,
transceiving device, or network interface card (NIC). Net-
work device 200 also includes input/output interface 224 for
communicating with external devices, such as a headset, or
other input or output devices not shown in FIG. 2. Input/
output interface 224 can utilize one or more communication
technologies, such as USB, infrared, Bluetooth™, or the like.

The mass memory as described above illustrates another
type of non-transitory computer-readable media, namely
computer-readable storage media. Computer-readable stor-
age media (devices) may include volatile, nonvolatile, remov-
able, and non-removable media implemented in any method
or technology for storage of information, such as computer
readable instructions, data structures, program modules, or
other data. Examples of computer readable storage media
devices include RAM, ROM, Electronically Erasable Pro-
grammable Read-Only Memory (EEPROM), flash memory
or other memory technology, Compact Disc Read-Only
Memory (CD-ROM), digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
physical medium which can be used to store the desired
information and which can be accessed by a computing
device. As noted, such computer-readable storage media are
non-transitory and are not to be misconstrued with commu-
nication media disclosed above in conjunction with FIG. 1.

As shown, data stores 254 may include a database, text,
spreadsheet, folder, file, or the like, that may be configured to
maintain and store various database data, global dictionaries,
data mapping stores, universal primitives, or the like. In some
embodiments, the databases stored within data stores 254
include mixed numeric and non-numeric data types. As an
aside, it should be readily understood, that non-numeric data
includes any forms of information that is not numeric. Data
stores 254 may further include program code, data, algo-

US 9,275,050 B2

7

rithms, and the like, for use by a processor, such as central
processing unit (CPU) 212 to execute and perform actions. In
one embodiment, at least some of data and/or instructions
stored in data stores 254 might also be stored on another
device of network device 200, including, but not limited to
cd-rom/dvd-rom 226, hard disk drive 228, or other computer-
readable storage device resident on network device 200 or
accessible by network device 200 over, for example, network
interface unit 210.

The mass memory also stores program code and data. One
or more applications 250 are loaded into mass memory and
run on operating system 220. For example, an apparatus such
as the above discussed non-transitory computer readable
devices may have stored thereon computer-executable
instructions that when loaded into mass memory may by
executed by operating system 220 within network device 200
to perform operations.

Examples of application programs may include transcod-
ers, schedulers, calendars, database programs, word process-
ing programs, Hypertext Transfer Protocol (HTTP) pro-
grams, customizable user interface programs, IPSec
applications, encryption programs, security programs, SMS
message servers, IM message servers, email servers, account
managers, and so forth. Mass memory may also include
primitive manager 257, web services 256, and data manage-
ment services (DMS) 258.

Web services 256 represent any of a variety of services that
are configured to provide content, over a network to another
computing device. Thus, web services 256 include for
example, a web server, a File Transfer Protocol (FTP) server,
a database server, a content server, or the like. Web services
256 may provide the content over the network using any of a
variety of formats, including, but not limited to WAP, HDML,,
WML, SGML, HTML, XML, compact HTML (cHTML),
extensible (xHTML), or the like.

In one embodiment, web services 256 may provide an
interface for accessing and manipulating data in a data store,
such as data stores 254, or the like. In another embodiment,
web services 256 may provide for interacting with DMS 258
that enables a user to access and/or otherwise manage various
database services that may be provided through network
device 200.

DMS 258 provides database services for any of a variety of
data, including, data that may include mixed numeric, and
non-numeric data. DMS 258 may organize data using any of
a variety of mechanisms and approaches, where the storage
and organization mechanism and a way in which the data
appears to a user may be different. In one embodiment, the
data may be organized based on what the data represents,
including, for example, into columns, rows, and various
tables that might represent a business, its resources, costs, or
the like. As used herein, the term “database,” refers both to
how a user might view the data and to a physical and/or
logical materialization of that data in memory, storage, or the
like, along with a software product for manipulating the data,
its views, and storage of the data.

DMS 258 may employ any of a variety of software data-
base products, including, but not limited to Oracle DBMS,
Microsoft Structured Query Language (SQL) Server, IBM
DB2. Open source DBMS MYSQL, or even a proprietary
database software product. In one embodiment, DMS 258
may provide its own user interface for managing the data. In
one embodiment, the interface may be accessed using any of
avariety of mechanisms, including through web services 256.
However, other mechanisms may also be used.

In one embodiment, DMS 258 may also be configured to
determine common data types for at least some of the data

25

35

40

45

65

8

stored within data stores 254, or other database storage envi-
ronments. DMS 258 may then create a global dictionary map
for common data types, enabling data stored within the data-
base storage environments to employ globally accessible
keys that enable access to the common data types. DMS 258
may employ a process such as described below in conjunction
with FIG. 3 to perform at least some of these actions.

DMS 258 may further employ primitive manager 257 to
manage data within its database environment. In one embodi-
ment, primitive manager 257 may search various mixed
numeric/non-numeric data fields for non-numeric data.
Primitive manager 257 may then create universal primitives
for at least non-numeric data that may be found. In one
embodiment, the universal primitive may be a 64-bit data type
representation using the IEEE-754 standard for doubles. In
one embodiment, non-numeric data within the database may
be represented by setting a first field within the 64-bit univer-
sal primitive to 0x7ff (HEX) to indicate that the data is non-
numeric (i.e. not-a-number or “NaN”). Primitive manager
257 may also manipulate other fields within the 64-bit uni-
versal primitive to represent other characteristics of the data,
including, a type of the data, a storage location/block/offset, a
pointer to the data, or so forth, as used in step 408 of FIG. 4.
Non-limiting, non-exhaustive examples of various UNIPs are
illustrated in FIG. 6, described in more detail below. In any
event, primitive manager 257 may then replace the data
within the database with the universal primitive, such that
subsequent queries performed on the data may take advantage
of the universal primitives. Primitive manager 257 may
employ a process such as described below in conjunction with
FIG. 4 to perform at least some of its actions.

Generalized Operation

As discussed above, there is a desire to be able to make
more efficient use of resources used for various database
management environments. For example, many traditional
approaches seek to compress the data stored within the data-
base to reduce an amount of storage space used.

Another mechanism that is directed towards reducing
resource requirements employs a dictionary compression
approach, where long values are replaced with smaller ones,
creating and separately employing a stored lookup table for
mapping or translation of the values. For example, consider
storage of a transaction table such as shown in Table 1 below.

TABLE 1
Transaction Date Person Amount
77 May 4, 2010 BobZ 32.73
78 May 5, 2010 BobZ 883.01
79 May 6, 2010 Pete $21.22
80 May 9, 2010 Pete €1,892.99
81 May 10, 2010 Pete 123.22

In an uncompressed traditional SQL database, this data
might be stored in a database similar to Table 1, reading left to
right and then downwards in the table. Finding a value in the
Person column on row X might involve something like:

string offset=table_base_address+(rownum*(sizeof
(transaction)+sizeof(date)+sizeof(person)+sizeof
(amount))+sizeof{transaction)+sizeof(date)

In a column store approach, memory access (and compres-
sion) might be obtained for many queries by storing the
column values together. For uncompressed, simple storage,
the string offset might be found using something like this:

String offset=person_base_address+(rownum*sizeof
(person))

US 9,275,050 B2

9

In a local dictionary type compression approach, the per-
son column may, in one embodiment, be stored as shown in
Tables 2-3:

TABLE 2
Key Value
0 BobZ
1 Pete
TABLE 3

Values By Row

JERE N =]

For large numbers of rows with lots of repetition, this may
be an efficient storage mechanism, because, assuming the
only two values in the column are BobZ and Pete, an indi-
vidual row can be stored in a single bit, as opposed to each row
requiring 4 ASCII letters that are 8 bytes each. Such a com-
pression scheme may reduce data sizes by upwards towards
96%. However, rarely are there only two values in a column.
However, 2 bits can store 4 possible values, 4 bits can store 16
(274=16), and so forth. As the size of the string values in this
column are 32 bytes (e.g., 256 bytes), there is a lot of com-
pression capability. However, because strings are rarely four
letters long in typical tables, this may further increase the
technique’s effectiveness.

In “executable” compression—there might be little need to
“decompress” the data out to its full size before executing
logic against it. One objective includes not merely reducing
the size of the data, but rather increasing performance when
operating on the data. However, reducing the size of the stored
data is a result of the subject innovations described herein. At
least one reason for a performance increase may arise in part
because when data is compressed, there may be less of a load
over the network, and/or a decreased demand from a slow
disk. More of the data can be cached in RAM. Also, more of
the data can be cached/held within a CPU’s L1/L.2 cache.
Thus, such techniques are expected to reduce query response
time against large data sets by many orders of magnitude.

For heavily interrelated data, or for certain types of queries,
such as those used by semantic or ontological data stores,
performance ofthe system as a whole is often dependent upon
looking up and correlating values between different columns.
The above techniques help. However, what may happen
quickly is that another table may be needed in the system,
such as described in TABLE 4 below.

TABLE 4
Employee Manager
George Pete
Pete Zoey
Lisa Zoey
BobZ Pete
Paul Pete

Each of these columns may then be dictionary compressed,
although it is not required. In any event, the following tables
5-6 may be generated:

10

15

20

30

35

40

45

50

55

60

65

TABLE 5
Person Key Person Value
1 George
2 Pete
3 Lisa
4 BobZ
5 Paul
TABLE 6
Manager
Key Manager Value
1 Pete
2 Zoey

The resulting table (Table 7) may be stored (either directly
like this, or in a column based layout).

TABLE 7

Person Manager

[VT
— N

Then, to find a manager of the person who logged transac-

tion #78, the following actions may be performed:

. Find which row transaction #78 is: Row 2

. Find which person that is (compressed): Person #1

. Look up who Person #1 is: BobZ

. Find which Employee #BobZ is: Employee #4

. Find which row Employee #4 is in: Row 4 (if the column
is compressed these won’t match)

6. Find the manager in Row 4: Manager #1

7. Find who manager #1 is: Pete

If the query is complex and/or spans an entire graph of
tables or relationships (as may arise in some semantic or
ontological systems), there can be many more steps to be
performed than these seven.

One issue that may arise is all of the bidirectional lookup
tables (such as the ones matching Person #1 to BoBZ, and
vice versa). The lookups may include a handful of sequential
data accesses—even when the tables are completely in RAM,
which may be expensive. If the lookup tables can’t be stored
in RAM (or aren’t currently there because they haven’t been
loaded from the disk/network—or were swapped out to
there), then this may be even more expensive.

Therefore, a global dictionary may be employed in order to
discover relationships. In one embodiment, a large central
hash map and the standard technique of object pointers may
also be used for fast equivalency. Using object pointers may
provide some execution benefits of dictionary compression
while the column is in memory; but, memory pointers might
not be persisted or otherwise kept consistent when the
memory isn’t accessed. This may provide the performance
benefit, but may result in the uncompressed data needing to be
stored to disk.

Therefore, the subject innovations disclosed herein intro-
duces a notion of persistent global dictionary. In one embodi-
ment, this persistence may be across all columns in the sys-
tem. However, in other embodiments, the persistence may be
across all columns and rows, or across rows. In addition to the
performance advantages described above, because values in

RN =

US 9,275,050 B2

11

columns from different tables are directly comparable, the
system can directly do lookups (or joins) across tables.
Global Dictionary Encoding

In one embodiment, an encoded global map may like this
table 8, below.

TABLE 8
D String
1 BobZ
2 Pete
3 George
4 Lisa
5 Paul
6 Zoey

And as stored, the tables might like Tables 9-10.

TABLE 9
Transaction Date Person Amount
77 May 4, 2010 #1 32.73
78 May 5, 2010 #1 883.01
79 May 6, 2010 #2 $21.22
80 May 9, 2010 #2 € 1,892.99
81 May 10, 2010 #2 123.22
TABLE 10
Employee Manager
#3 #2
#2 #6
#4 #6
#1 #2
#5 #2

Using the above centralized, global dictionaries, the afore-
mentioned algorithm for finding the department account code
of the person who logged transaction #78, may now employ
less steps. For example, at least the intermediate lookups are
no longer necessary:

1. Find which row transaction #78 is: Row 2

2. Find which person that is (compressed): #1

5. Find which row #1 is in within the Employee/Manager

table: Row 4

6. Find the manager in Row 4: #2

7. Lookup #2 is: Pete

Steps 3 and 4 above are crossed-out to indicate that they are
not performed. One embodiment of a process for creating
global dictionaries, such as described above is described in
more detail below, in conjunction with FIG. 3.

Numeric Columns

Consider the “Amount” column of the Table 1. Note that in
this non-exhaustive, non-limiting example, the Amount col-
umn basically consists of numbers (although of different
currencies)—and that they’re all unique (in general, that there
is only very rare duplication). Also, numbers typically have a
much smaller representation inside a computer system than
arbitrary strings do—all of those numbers will fit into a single
32 bit value.

A common query might be to ask “give me the total charges
for Zoey’s department”. In this case, there may be a signifi-
cant amount of addition. Any numeric representation that
isn’t in the CPU’s native format (such as a 2’s complement
integer or an IEEE floating point) is likely to incur additional
overhead that may include first transposing the number into

10

15

20

25

30

35

40

45

50

55

60

65

12

the native format for execution, and then, invariably, back to
the chosen representation for storage of the results. Therefore,
it may be tempting to simply store the numeric data in its
native format.

Unfortunately, in the real world, even such numeric data is
often entered by humans and may be messy. Consider rows 3
and 4 of Table 1, which contain monetary values of $21.22
and € 1,892.99. While numbers, and in a column dominated
by numbers, these values are exceptional cases with symbols
in them that might not be stored inside a 2’s complement
integer or IEEE floating point. Further, such symbols can not
be readily ignored, especially where there are meaningful
differences. Therefore, it is often desirable to maintain the
user input as it was entered, or treat Euros and dollars differ-
ently. For example, some implementations might convert
Euros into dollars. However, in other embodiments such data
differences may be represented instead as non-numeric data.
Moreover, in one embodiment, such non-numeric data may
be identified and converted to a universal primitive (UNIP).
The universal primitives may then be uniquely identified
based on a first field, for example. That is, at least non-
numeric data within mixed data fields of numeric and non-
numeric type of data may be stored using a universal primitive
(UNIP) to identify the stored non-numeric data. The UNIP
may take advantage of the IEEE-754 standard for floating
point data representation by setting a first field within the
UNIP to 0x7ff (HEX) to indicate that the data is non-numeric
(NaN). In some embodiments, other fields may be manipu-
lated to identify a type of data, a storage location, an offset, or
the like. The UNIP may then replace the non-numeric (or
even numeric) data within the database and subsequently be
used during operations performed on the data.

One embodiment of a process useable to create UNIPs is
described below in conjunction with FIG. 4. Moreover, as
disclosed in FIG. 3, global dictionaries and UNIPs may be
used together in a same database to provide reduced resource
demand, and increased speed.

Therefore, the operations of certain aspects of the subject
innovation are now described with respect to FIGS. 3-4. FIG.
3 illustrates a logical flow generally showing one embodi-
ment of an overview process for use in determining global
dictionaries for common data types within a database store.
The operations of process 300 of FIG. 3 may, in one embodi-
ment, be performed within one or more network devices, such
as DMS 107 of FIG. 1.

Process 300 of FIG. 3 begins after a start block, at block
302, where a database may be searched to identify possible
common data types. In the above table examples, employees
and managers may be considered to be common data types, as
both include names of persons. While the above examples do
not illustrate it, other common data types could also be iden-
tified based on various criteria. For example, business names,
cities, or other characteristics of the data may be used to
identify common data types. Thus, other common data types
may also be identified. In other embodiments, block 302 may
be optional, such that no common data type may be identified
when creating a global dictionary.

Flowing next to block 304, global dictionaries are gener-
ated for the common data types. The common data types may
be identified in the global dictionary using any of a variety of
mechanisms. For example, in one embodiment, a common
data may be found during a search of block 302; the found
common data may then be copied to the global dictionary. In
one embodiment, a key may be a sequential integer value
usable to index and readily locate the data within the global
dictionary. However, other key values may also be used.

US 9,275,050 B2

13

Processing then flows to decision block 306 where a deter-
mination is made whether the common data values might be
replaced with UNIPs. Such determination might be made
based on whether the common data includes, for example,
non-numeric data. In any event, if the common data values are
to be replaced, processing flows to block 310. One embodi-
ment of a process useable to replace the data types with a
UNIP is described below in more detail in conjunction with
FIG. 4, where, values for the common data may be selectively
replaced with UNIPs. Processing then returns to a calling
process to perform other actions.

If it is determined, at decision block 306, however, that the
data is not to be replaced with UNIPs, processing flows to
block 308, where the common data type’s values are replaced
with the global dictionary keys. Processing then returns to a
calling process to perform other actions.

FIG. 4 illustrates a logical flow generally showing one
embodiment of an overview process for use in determining
universal primitives for non-numeric data and selectively
replacing the data in a global dictionary with the UNIP. Pro-
cess 400 of FIG. 4 may be performed within one or more
network devices, such as DMS 107 of FIG. 1. Moreover, as
noted above, process 400 may represent on embodiment of a
process useable at block 310 of process 300 discussed above.

Process 400 begins, after a start block, at block 402, where
data may be read from the database. As noted above, the data
could also be read from within a global dictionary. In any
event, processing then flows to decision block 404, where a
determination is made whether the read data is numeric data,
or non-numeric data. If it is determined to be numeric data,
processing may flow to decision block 416 to determine
whether there is more data to be read and evaluated; other-
wise, if the data is non-numeric, processing continues to
decision block 406.

At decision block 406, a determination is made whether a
UNIP is already assigned to the read data. In one embodi-
ment, such determination might be made by performing a
search into a file store that is created for storing converted
non-numeric data using UNIPs. If a match is found, then the
process flows to block 414, where the already assigned UNIP
is used to assign to the read data. Processing then flows to
block 412; otherwise, if a UNIP match is not found, process-
ing flows to block 408.

At block 408, a file location and offset is obtained within
the file store useable for storing converted non-numeric data.
In one embodiment, this file store may be located within a
data store within network device 200, described above. In one
embodiment, the file store may be allocated space that is
arranged such that the numeric data may be concatenated
“end-to-end” within the file store as a stream of data. In one
embodiment, a file location may be an address into the data
storage device to locate the file store, while an offset value
may be to a next available location within the file store use-
able for concatenating a next non-numeric data value. Insome
embodiments, a plurality of files may be utilized to store the
data. In one embodiment, a hash of the data may be generated
to identify one of a plurality of files to store the data.

Continuing to block 410, a UNIP may be created using, for
example, an error code for the IEEE-754. That is, a first field
of'the UNIP may identify the UNIP as non-numeric, using an
IEEE 754 error code that indicates that the data is non-nu-
meric. In one embodiment, the first field might be populated
with the value 0x7ff (HEX) to indicate that the data is non-
numeric (NaN). Other fields within the UNIP may also be
populated to indicate for example, a type of the data, such as
whether the data is a string, whether the data is a currency
(and/or a type of currency), or any of a variety of other types

10

15

20

25

30

35

40

45

50

55

60

65

14

of data that the system might desirable to identify and track.
For example, other data types may also be identified, such as
dates or lists or sets of values. Moreover, other fields within
the UNIP may be used to identify a storage location/block/
offset or so forth for the data. For example, a second field
within the UNIP might be populated with a file storage
address, and a third field within the UNIP might include an
offsetinto the file storage, where the offset is an address offset
from the file storage address. Other embodiments are
described below in conjunction with a non-limiting example
of UNIP initialization code.

In any event, the UNIP may then be used to replace the data
within the database, at block 412. Proceeding to decision
block 416, a determination is made whether more non-nu-
meric data is to be evaluated for possible UNIP replacement.
If'so, processing loops back to block 402; otherwise, process-
ing may return to a calling process.

It will be understood that each block of the flowchart illus-
tration, and combinations of blocks in the flowchart illustra-
tion, can be implemented by computer program instructions.
These program instructions may be provided to a processor to
produce a machine, such that the instructions, which execute
on the processor, create means for implementing the actions
specified in the flowchart block or blocks. The computer
program instructions may be executed by a processor to cause
a series of operational steps to be performed by the processor
to produce a computer-implemented process such that the
instructions, which execute on the processor to provide steps
for implementing the actions specified in the flowchart block
or blocks. The computer program instructions may also cause
at least some of the operational steps shown in the blocks of
the flowchart to be performed in parallel. Moreover, some of
the steps may also be performed across more than one pro-
cessor, such as might arise in a multi-processor computer
system. In addition, one or more blocks or combinations of
blocks in the flowchart illustration may also be performed
concurrently with other blocks or combinations of blocks, or
even in a different sequence than illustrated without departing
from the scope or spirit of the invention.

Accordingly, blocks of the flowchart illustration support
combinations of means for performing the specified actions,
combinations of steps for performing the specified actions
and program instruction means for performing the specified
actions. It will also be understood that each block of the
flowchart illustration, and combinations of' blocks in the flow-
chart illustration, can be implemented by special purpose
hardware based systems, which perform the specified actions
or steps, or combinations of special purpose hardware and
computer instructions.

In one embodiment, for database queries that may request
an action on a field of data, the UNIP may be used to quickly
identify whether an operation can be consistently applied
over the data or whether at least some of the data might need
to be converted, or have some other action performed upon
the data. For example, in the tables discussed above, even
though there is some non-numeric data, a query might not
include operations on the non-numeric data. However, where
the query includes operations upon mixed data, the UNIP
may be employed to quickly access a presence of a non-
numeric data, and to convert the data should it be needed. In
one embodiment, non-numeric data may be represented as a
UNIP and numeric data may be represented as the number
(e.g. a double), which may enable a processor to process
numeric data without accessing a conversion data store. Other
operations might be quickly performed with the UNIP
directly. Thus, for data comparisons, for example, the com-
parisons might be performed on the UNIPs rather than even

US 9,275,050 B2

15

seeking to access the non-numeric data itself. Thus, use of the
UNIP is directed to further reducing performance overhead.
For example, when cross-referencing any two tables in the
system (such as in the ‘generalized operation’ 7-step process
above), the raw data definition of “BoBZ” might not be
accessed or used.

Another non-limiting, non-exhaustive example might
include encoding of date and time data. A date can be repre-
sented in a more processor friendly format than a string rep-
resentation, such as the usual machine format of “millisec-
onds since 1970”. For example, within 50 bits of available
space, dates through the year 37648 (specifically Wed May 6
15:07:22 PDT 37648) may be represented. With this encod-
ing, when the system might want to know, for example,
“date+5 days”, the system can employ a process:

1. Convert from a UNIP back to a “milliseconds since

1970 format by masking against 0x8003 fff{tfffttt.

2. Add 432000000 (5 days in milliseconds)

3. Convert back to a UNIP using a bitwise OR against
0x7tc000000000000 (which is the Ox7ff NaN high bits
and also “01” bits for a type of “date”. Clearly other
inline encodings could be used.

This may be much more efficient than parsing the string
version of the date from base storage, or even storing a pointer
to the date in milliseconds.

Other Database types

As used herein, the term “database” refers generally to
storage of data, as well as mechanisms for accessing that data.
Thus, for example, the term database includes a columnar
database system; a relational database system (RDBMS); a
schema-less semantic store using a non-table-based represen-
tation, such as a Resource Description Framework (RDF)
triple; or any of a variety of other structures useable for
accessing and storing data in an organized manner.

Some Semantic or Ontological database systems may not
encode data as “types” or “identifiers” directly, using tradi-
tional typing. That is to say, a particular property for a data
item might not be tagged as a “number” or a “string” or a
“date,” or the like. Further, some systems tend to join many
more disparate identifiers together during an average query.
However, a universal primitive is directed towards improving
operational efficiencies, at least because lookups may be
more efficient and/or a priori typing (such as a declaration that
a particular property is a number or a date) might not be
required.

FIG. 5 illustrates the previous transaction/employee
example 500 encoded in a semantic RDF, as a non-limiting,
non-exhaustive model. Other than the full URI qualification
of references between entities (such as the addition of the
“http://apptio.com/em/” on the front of “BobZ”), the infor-
mation contained is approximately the same. Further, the
lookups used to answer the question of the manager of the
person who logged transaction #78, more formally, the “tx:
manager” of “http://apptio.com/tx/78” approximately fol-
lows the same lookup logic. In practice, columnar storage
might be used to represent the above RDF graph, along with
a column based dictionary.

Data Sizes

It should also be noted that, 64-bits may be a convenient
and efficient choice for representation of a universal primitive
as many off-the-shelf hardware is often designed to natively
operate on 64-bit IEEE-754 floating point values. However,
the subject innovations are not limited to this configuration,
and other values may also be used. For example, where addi-
tional address space might be desired for a non-numeric data
reference, it may be appropriate to extend (or shorten) the
length of the universal primitive in order to accommodate

10

15

20

25

30

35

40

45

50

55

60

65

16

other situations. For example, 32-bit and 128-bit floating
point numbers may also employed. Thus, universal primitives
as disclosed herein may be applied to these representations, as
well.

Description of the UNIP Numeric Format

As discussed above, it may be desirable to encode multiple
types of values into a single 64-bit value. By leaving IEEE-
754 floating point numbers in their natural range, numerics
can be natively operated on by properly configured hardware.
This is because IEEE-754 floating point numbers may be
used to define virtually any value starting with Ox71f (except
for 0x7£10000000000000) as a different class of NaN (or “Not
a Number”). The remaining 52 bits available within the dif-
ferent classes of NaN space may then be available for encod-
ing additional information.

Within many programming languages, a NaN value may be
used to represent certain invalid mathematical operations,
such as the result of dividing by zero, or the like. For example,
in the Java language, a single bit-pattern might be used for all
classes of NaN’s. In Java, for example, that pattern might be
0x7ff8000000000000. Nevertheless, in some embodiments,
some masking hooks might be added so that other types of
NaN’s don’t enter the UNIP type system. In Java, one
embodiment might use a ‘double’ type for numerics and a
‘long’ datatype for UNIP encoded values. In other languages,
such as C or C++, a typedef can be used to achieve the same
static protection from a compiler.

Within the 52-bits available in the UNIP, different patterns
are possible depending upon system characteristics. In some
embodiments, 2 bits might be used for type, while the remain-
ing 50 bits might be used for a type dependent value. For
example, native types that may be encoded might include,
Date (bit value: 01), Set (multiple other values, bit value 10)
and String (bit value 11). The bit pattern 00 may then be used
as an extended type system with fewer value bits (meaning
that, for example, the next 3 bits are used for an additional 8
datatypes, leaving 47 bits for values). These extended
datatypes could be used to represent Boolean values, Integers
and other types of Enumerations. Further, within the 00 type
bit pattern, some other “magic values” could be reserved,
such as O0x7ff0000000000001 (for an “invalid” wvalue),
0xfff0000000000000 (for null), 0x7ff0000000000000 (for
‘uninitialized’, which is used to mean “has not been calcu-
lated yet”. In some environments, programmers may use a
‘null” for uninitialized; however, a distinction may be made
such that the initialized value results in null.

In some embodiments, other types may define an empty
string (“) as 0x7ff0000000000010 and an internal control
result value of 0x7ff0000000000011 for ‘try again’, which
could used when doing optimistic locking in multi-threaded
situations to indicate to external algorithms to re-attempt the
UNIP assignment because the previous attempt was tran-
siently unsuccessful. Still other values may used for various
types, including, but not limited to 0x7ff0000000000100L.,
0x7£f0000000000101L, 0x7£f00000000001 10L and
0x7£f0000000000111L.

Thus, non-IEEE 754 values stored in the UNIP may be
behind a bit mask of 0x7ff0000000000000 (which is hex for
a 64 bitpatternof0111 1111 1111 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000). Again, other
numbers of bits may be used. Further, the non-numeric type
of'the UNIP may be in the following 2 bits, behind a mask of
0x000c000000000000. However, other numbers of bits may
be used. In addition, a type-specific value portion may be
behind a mask of: Ox0003 fH{fHTfff.

US 9,275,050 B2

17

Non-Limiting Data Types Examples:

The following provides examples of various example data
types. However, other values, and/or data types may also be
defined, and it is noted that the subject innovations are not
limited or otherwise constrained to the examples discussed
herein. Date: A date type (01) may be the 50 bits as a “milli-
seconds since epoch”. This may be typical in some computer
systems, although a 64-bit value may be used. Before the
advent of 64-bit systems it was common to use a 32-bit value
as the date, but might run out of space in 2038. A 64-bit value
may permit dates for the next 292 billion years, while a 47 bit
date might permit dates for the next 570 thousand years
(specifically until Tue July 25 10:58:01 PDT 572823), which
may be sufficient for many purposes.

1. String: A string type (11) may use the next 50 bits as

follows:

3 bits for which partition to use (giving 8 possible par-
titions). The partition may be used for concurrency,
permitting multiple workers (either different threads
on a same computer system, or entirely different
machines or clusters of machines) to simultaneously
service UNIP translation requests without requiring
co-ordination between them. The partition may be
assigned using a hashing function on the string, as is
common.

19 bits for which “block” to use (giving a maximum of
524,287 blocks).

28 bits for the offset of the string bytes within the block
(giving, in one embodiment, a maximum block size of
268 MB).

It should be readily apparent that different bit split posi-
tions can be used. For example, for a smaller number of
strings under higher concurrency, some of the block bits
might be taken and used to add additional partitions.

Further, while this strategy stores offsets within each block
for performance reasons (for example, bitmask and addition
algorithms may be used to obtain a pointer to the string data
itself), if the number of strings to be stored is much larger, it
might be appropriate to use sequential addressing instead—
that is, a first string is “#1”, the second is “#2”, and so forth.
This might use an array-style lookup table (one extra memory
dereference) to process, but might be able to store many more
strings within the same address space limitations. In such a
sequential assignment strategy, the “block™ bits aren’t neces-
sarily needed at all, meaning that all 47 bits (or more/less
depending upon number of partition bits) could be used for
strings, giving a theoretical maximum of 140 trillion strings.

2. Set: The set type (10) may be used as a type that holds

other UNIP values. For example, it could store multiple

strings, such as (“Bob”, “Pete”, “George”™), or multiple

numbers. In some embodiments, might use it as a

mechanism to do multiple-key table joins with the same

efficiency as single-key joins. The use of the 50 value
bits may be roughly the same as for the string data type

(above), except that the data at that location may be an

array of other UNIP values.

It is possible to make additional tradeoffs on these bit-
space decisions—for example, a larger value (128 bit) might
provide more flexibility in address space, or using a less
precise numeric (such as 32-bit floating point) achieves the
same.

In any event, FIG. 6 illustrates non-limiting, non-exhaus-
tive examples of some of the various UNIPs discussed above.
It is important to note that these are merely examples, and
other lengths, and structures may also be employed. As such,
the subject innovations disclosed herein are not to be con-
strued as being limited to these example illustrations.

25

30

40

45

50

55

65

18

Non-Limiting Examples of Operating on Universal Primi-
tives
Encoding a Value to a UNIP

The following non-limiting example process can be used to
encoding an arbitrary value into a UNIP. For example, in
some embodiments, the following process may be used in
conjunction with, or as one implementation of process 400 of
FIG. 4 discussed above.

1. If the value is a NaN (any possible NaN), it is converted
to the canonical NaN value of 0x7{f8000000000000L..

2. If the value is “invalid”, return an error condition.

3. If the value is a number, return it directly. Thus, as
discussed above, these steps may be used to determine at
decision block 404 that the read data is numeric.

4. Ifthe value is determined to be “special” (such as null or
the empty string), an appropriate UNIP is assigned. For
example, for null, the value of 0x7{f0000000000100L
may be used, for the empty string, the value of
O0x7ff0000000000010 may be used, or so forth. Such
actions may be performed, for example, at block 410 of
process 400.

5. Ifthe value is a date or timestamp (or other direct value,
such as a Boolean), use bitmasks to encode the value
directly. A timestamp may, for example, be masked
against Ox3{fifffffffl.. Again, these actions may be
performed at block 410 of process 400 above.

6. For data storing value types (such as strings or sets):

a. Hash the value into partitions using any of a variety of
hashing functions and modulo.

b. Send the assignment request to that partition.

c. The partition may use a hashmap to determine if a

UNIP for that value is already assigned. If so, that

UNIP is returned. Such determination may be

employed, for example, at decision block 406 of pro-

cess 400.

d. Otherwise:

i. Space is allocated at the end of a most recent block
of data (or a new block created if necessary).

ii. The value data is written into the block.

iii. The block number and offset within the block are
used to generate a new UNIP for this value, as
discussed above at block 408.

iv. The partition’s hashmap is updated with this UNIP
assignment.

v. The new UNIP is returned. In one embodiment, this
UNIP may be used to replace the data within the
database, as discussed at block 412 of process 400.

7. For sets, the “value data” stored in step 6.d.ii above may
comprise multiple UNIPs that are generated by running
the above process on the set contents.

Decoding a Value from a UNIP

As discussed above, many database operations may be
performed directly using the UNIP, rather than converting or
decoding the UNIP back into the non-numeric value that it
represents. However, when it is desirable to operate on the
non-numeric value represented by the UNIP, the following
may be used to convert the UNIP. It should be noted that the
following represents one embodiment of a process for such
conversion, and others may be used instead. The following
may be performed by virtually any computing device operat-
ing on data within the database, including, any of client
devices 101-105, and/or DMS 107 of FIG. 1.

The process may begin, after a start block, where:

1. If the UNIP is a number, return it directly (since numbers
have the same binary format).

2. If the UNIP is canonical NaN (0x7ff8000000000000L.),
return NaN.

US 9,275,050 B2

19

3. If the UNIP is “invalid” (0x7£f0000000000001), return
an error condition.

4. Ifthe UNIP is determined to be “special” (such as null or
the empty string), return the appropriate value. For
example, O0x7ff0000000000100 returns null, and
0x7ff0000000000010 returns the empty string.

5. Check the bits referring to the UNIP’s type:

a. For example, if the bits are 01 (for a date), use a
bitmask to uncover the milliseconds-since-epoch
value directly. (That is, mask against Ox3 fffftfftTY).

b. If the bits are 11 (for a string):

i. Determine the partition number from the UNIP.
Route the request to an appropriate partition man-
ager (which may be a different thread or different
machine or machine cluster)

ii. The partition manager determines a block number
and offset from within the UNIP value.

iii. Read the string directly from the block at the
specified offset and return it.

c. If the bits are 10 (for a set), use the same algorithm as
in step b) above, but the value read from the block/
offset is a list of UNIP values that are each then
decoded using this same algorithm. Note that the
decoding of those UNIP’s may be “lazy” (or done “on
demand” by the process in order to reduce a runtime
overhead of this process.

The above provides one non-limiting example, and as such,
it should be recognized that other actions may also be per-
formed, based on various UNIP types employed, or the like.
Temporary UNIP Assignment

When remote machines are used for UNIP assignment,
there may a significant latency to requesting or looking up
UNIP’s. Batching the UNIP requests together can largely
mitigate the throughput impact of this, but an additional strat-
egy of assigning ‘temporary’ UNIP’s can be used, permitting
the system to continue processing in a slightly degraded state.

In some embodiments, a bit (possibly the type bit 00) may
be used to indicate that a UNIP is not a ‘global’ UNIP, but is
a temporary assignment. Values within that type bit can be
assigned sequentially (or in per-thread blocks). When com-
paring UNIPs, then—if one or both of the parameters are
temporary UNIPs, then the system compares the values
instead of the UNIPs directly. Alternatively, the system can
wait (stall) until the global UNIP assignment arrives. When
the global UNIP assignment arrives, temporary UNIPs can be
replaced.

Encryption

As non-numeric data are replaced with placeholder (UNIP)
values, the system can largely operate on the data opaquely
(without examining the values themselves). This permits effi-
cient operation even if the data is encrypted on disk—as in
some embodiments, the decryption can double access time to
on-disk data, resulting in significantly slower system perfor-
mance. With only the UNIP definitions encrypted, the rest of
the system data may be un-interpretable without the UNIP
definitions—even though processing can proceed on it at full
speed, including processing on the UNIP values where that
processing does not require decoding. For example, when a
global dictionary in place, equality, inequality and joins do
not require the UNIP to be decoded (and filtering or alpha-
numeric sorting still would require decoding to be done).

In other words—the UNIP values (data represented by the
UNIP) may be encrypted, but the rest of the data in the system
is stored directly (unencrypted)—yet the net effect is that the
data is still secure as the “‘unencrypted’ data has had all iden-
tifiable information removed. That is, in one embodiment, the
data represented by the UNIP is encrypted and a substitution

10

20

25

30

35

40

45

50

55

60

65

20

of the UNIP in the data is used to remove identifiable infor-
mation from the database. In some embodiments, numerics
need not be encrypted in this scheme, which may provide a
benefit to performance but may or may not be sufficiently
secure.

The above specification, examples, and data provide a
complete description of the manufacture and use of the com-
position of the invention. Since many embodiments of the
invention can be made without departing from the spirit and
scope of the invention, the invention resides in the claims
hereinafter appended.

What is claimed as new and desired to be protected by
Letters Patent of the United States is:

1. A network device, comprising:

a database for managing mixed numeric and non-numeric

data;

a storage device for storing the database, or other data; and

a processor that is operative to perform actions, including:

reading data within the database having mixed numeric
and non-numeric data;
generating one or more global dictionaries for read data
having one or more common data types in the data-
base, wherein each read data value for a common data
type is copied to a global dictionary;
when it is determined that the read data value for the
common data type is non-numeric, performing fur-
ther actions, including:
creating a universal primitive (UNIP) having a first
field indicating that the read data value is non-
numeric, and at least a second field that identifies a
storage location within the storage device for stor-
ing the read data value, wherein the UNIP is
assigned to the read non-numeric data value, and
replacing the read non-numeric data value within the
database with the created UNIP, such that subse-
quent queries within the database manages queries
using the UNIPs that replaced the read non-nu-
meric data values having the common data types;
and
when it is determined that the read value for the common
data type’s values is numeric, replacing the common
datatype’s values with one or more keys for the global
dictionary.

2. The network device of claim 1, wherein the UNIP is
implemented using a Institute of Electrical and Electronics
Engineers (IEEE) Standard for Floating-Point Arithmetic
(IEEE-754) by setting a first field within the UNIP to 0x7{f
(HEX) to indicate that the data is non-numeric (NaN).

3. The network device of claim 1, wherein the one or more
global dictionaries are employed for managing each of a
plurality of UNIPs created for the read non-numeric data
values determined within the database.

4. The network device of claim 1, wherein the read non-
numeric data value identified by the UNIP is encrypted and a
substitution of the UNIP is used to remove identifiable infor-
mation from the database.

5. The network device of claim 1, wherein the processor
that is operative to perform actions, further including per-
forming at least one database operation on data within the
database, wherein the operation is directly performed on the
UNIP rather than on the read non-numeric data value repre-
sented by the UNIP.

6. The network device of claim 1, wherein the processor
that is operative to perform actions, including:

when the read data is non-numeric and is assigned to a

previously created UNIP to represent it’s read non-nu-

US 9,275,050 B2

21

meric data value, replacing this read non-numeric data
value within the database with the previously created
UNIP.

7. The network device of claim 1, wherein at least a portion
of the UNIP is encrypted.

8. A system, comprising:

astorage device that stores a database having stored therein

mixed numeric and non-numeric data;

one or more processors operative to perform actions,

including:
reading data within the database having mixed numeric
and non-numeric data;
generating one or more global dictionaries for read data
having one or more common data types in the data-
base, wherein a read data value for a common data
type is copied to a global dictionary;
when it is determined that the read data value for the
common data type is non-numeric, performing fur-
ther actions, including:
creating a universal primitive (UNIP) having a first
field indicating that the read data value is non-
numeric, and at least a second field that identifies a
storage location within the storage device for stor-
ing the read data value, wherein the UNIP is
assigned to the read non-numeric data value, and
replacing the read non-numeric data value within the
database with the created UNIP, such that subse-
quent queries within the database manages queries
using the UNIPs that replaced the read non-nu-
meric data values having the common data types;
and
when it is determined that the read value for the common
data type’s values is numeric, replacing the common
data type’s values with one or more keys for the global
dictionary.

9. The system of claim 8, wherein the UNIP is imple-
mented using a Institute of Electrical and Electronics Engi-
neers (IEEE) Standard for Floating-Point Arithmetic (IEEE-
754) by setting a first field within the UNIP to 0x7{f (HEX) to
indicate that the data is non-numeric (NaN).

10. The system of claim 8, wherein the global dictionary is
employed for managing each of a plurality of UNIPs created
for the read non-numeric data values determined within the
database.

11. The system of claim 8, wherein the storage address
further comprises a first address to the storage location and an
offset address from the first address.

12. The system of claim 8, wherein the processors are
operative to perform actions, further including performing at
least one database operation on data within the database, and
wherein the operation is directly performed on the UNIP
rather than on the non-numeric data represented by the UNIP.

13. The system of claim 8, wherein the processors are
operative to perform actions, including:

when the read data is non-numeric and is assigned to a

previously created UNIP to represent it’s read non-nu-
meric data value, replacing the read non-numeric data
value within the database with the previously created
UNIP.

15

20

25

30

35

40

45

50

55

22

14. The system of claim 8, wherein the read non-numeric
data value includes at least one of an alpha-numeric name, a
date, or a currency indicator.

15. An apparatus comprising a non-transitory computer
readable medium, having computer-executable instructions
stored thereon, that in response to execution by a computing
device, cause the computing device to perform operations,
comprising:

reading data within the database having mixed numeric and

non-numeric data;

generating one or more global dictionaries for read data

having one or more common data types in the database,
wherein a read data value for a common data type is
copied to a global dictionary;
when it is determined that the read data value for the
common data type is non-numeric, performing fur-
ther actions, including:
creating a universal primitive (UNIP) having a first
field indicating that the read data value is non-
numeric, and at least a second field that identifies a
storage location within the storage device for stor-
ing the read data value, wherein the UNIP is
assigned to the read non-numeric data value, and
replacing the read non-numeric data value within the
database with the created UNIP, such that subse-
quent queries within the database manages queries
using the UNIPs that replaced the read non-nu-
meric data values having the common data types;
and
when it is determined that the read value for the common
data type’s values is numeric, replacing the common
datatype’s values with one or more keys for the global
dictionary.

16. The apparatus of claim 15, wherein the UNIP is imple-
mented using a Institute of Electrical and Electronics Engi-
neers (IEEE) Standard for Floating-Point Arithmetic (IEEE-
754) by setting a first field within the UNIP to 0x7{f (HEX) to
indicate that the data is non-numeric (NaN).

17. The apparatus of claim 15, wherein the global dictio-
nary is employed for managing each of a plurality of UNIPs
created for the read non-numeric data value determined
within the database.

18. The apparatus of claim 15, wherein the storage address
further comprises a first address to the storage location and an
offset address from the first address.

19. The apparatus of claim 15, wherein the computing
device to perform operations, further comprising: performing
at least one database operation on data within the database,
wherein the operation is directly performed on the UNIP
rather than on the read non-numeric data value represented by
the UNIP.

20. The apparatus of claim 15, wherein the computing
device to perform operations, further comprising: when the
read data value is non-numeric and is assigned to a previously
created UNIP to represent the read non-numeric data value,
replacing the read non-numeric data value within the database
with the previously created UNIP.

#* #* #* #* #*

PATENT NO.
APPLICATION NO.
DATED
INVENTOR(S)

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

19,275,050 B2 Page 1 of 2
:13/649019

:March 1, 2016
: McLachlan et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On Title Page 3, item (56), under “OTHER PUBLICATIONS”, in Column 1, Line 51, delete
“VVikipedia,” and insert -- Wikipedia, --, therefor.

In the specification,

In Column 7, Line 15, delete “may by” and insert -- may be --, therefor.

In Column 7, Line 60, delete “DB2.” and insert -- DB2, --, therefor.

In Column 8, Line 61, delete “(date)” and insert -- (date)) --, therefor.

In Column 10, Line 39, delete “Pete” and insert -- Pete. --, therefor.

In Column 11, Line 45, delete “5. Find” and insert -- 3. Find --, therefor.

In Column 11, Line 47, delete “6. Find” and insert -- 4. Find --, therefor.

In Column 11, Line 48, delete “7. Lookup #2 is: Pete” and insert -- 5. Lookup #2 is: Pete. --,

therefor.

In Column 13, Line 61, delete “IEEE 754 and insert -- IEEE-754 --, therefor.

In Column 15, Line 18, delete “milliseconds)” and insert -- milliseconds). --, therefor.

In Column 15, Line 20, delete “(which” and insert -- which --, therefor.

In Column 16, Line 44, delete “(for” and insert -- for --, therefor.

In Column 16, Line 59, delete “non-IEEE 754 and insert -- non-IEEE-754 --, therefor.

Signed and Sealed this
Eighteenth Day of October, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) Page 2 of 2
U.S. Pat. No. 9,275,050 B2

In Column 19, Line 15, delete “cluster)” and insert -- cluster). --, therefor.

In Column 19, Line 24, delete “(or done™ and insert -- or done --, therefor.

